دوره پیاده سازی سیستم های توصیه گر با پایتون و یادگیری ماشین

امروزه سیستم های توصیه گر از محبوب ترین شاخه های علم داده هستند. از این سیستم ها برای پیش بینی “رتبه بندی” یا “ترجیحی” که کاربر به یک محصول می دهد استفاده می شود. تقریباً هر شرکت بزرگ فناوری آنها را به نوعی در کار خود اعمال کرده است. بسیاری از شرکت های بزرگ، به عنوان مثال آمازون و فیس بوک و eBay برای پیشنهاد محصولاتی مانند فیلم، موسیقی و کتاب از سیستم‌های توصیه گر استفاده کرده اند. آمازون برای پیشنهاد محصولات به مشتریان، فیس بوک برای توصیه صفحاتی که کاربران ممکن است دنبال کنند و YouTube برای تصمیم گیری در مورد اینکه چه ویدیویی به طور خودکار به عنوان ویدیوی بعدی پخش شود، از این سیستم استفاده می‌کند.

علاوه بر آن ، این سیستمها تأثیر زیادی در موفقیت تبلیغات تجاری شرکتها در زمینه مالی و رضایت مشتری دارند.

  • این شرکت‌ها با به کارگیری سیستم‌های توصیه گر توانسته اند رفتار مشتری‌ها و کاربران را پیش‌بینی کنند و با توجه علایق آنها، محصولات مشابه به آنها پیشنهاد کنند.
  • به عنوان مثال، برای درک اهمیت استفاده از یک سیستم توصیه گر بهینه، نتفلیکس در سال ۲۰۰۹ یک میلیون دلار به هر کسی که بتواند سیستمش را ۱۰٪ بهبود بخشد ، پیشنهاد داد.

سیستم های توصیه گر به طور کلی ، به سه دسته تقسیم می شوند:

  • Content Based Filtering
  • Collaborative Filtering
  • و سیستم های توصیه گر ترکیبی

در بین این سه روش  Collaborative Filtering محبوب ترین رویکرد است. در این روش از یک سیستم رتبه بندی برای پیش بینی ترجیحات یک کاربر با در نظر گرفتن ترجیحات کاربر مشابه (یا همان نزدیکترین همسایه) استفاده می شود.

در این دوره چه میگذرد؟

در این دوره  ابتدا به درک مفاهیم اولیه ی سیستم های توصیه گر و الگوریتم های متفاوت آن میپردازیم و سپس در الگوریتم Collaborative Filtering عمیق تر میشویم و  در نهایت یک سیستم توصیه گر فیلم ساده در زبان پایتون  پیاده سازی میکنیم.

معرفی پروژه

شما با تماشای ویدیوهای این دوره می‌توانید به درک مناسبی از نحوه عملکرد سیستم‌های توصیه گر دست یابید. متد اصلی ما برای پیاده‌سازی این پروژه الگوریتم Collaborative Filtering و مدل نزدیک ترین همسایه ها یا KNN است.

  • هدف اصلی ما در این پروژه، ساختن یک سیستم توصیه گر فیلم، به کاربران  یک سایت فیلم مانند Netflix است.
  • در پایان این پروژه شما قادر خواهید بود تا از مهارت‌های خود در زمینه برنامه نویسی با پایتون و یادگیری ماشین، در ساخت و اجرای یک سیستم توصیه گر بهره ببرید.

ورودی مسأله : «شناسه کاربری کاربر» (user ID)

خروجی مسأله : لیست رتبه‌ بندی شده از فیلم هایی که به احتمال زیاد، کاربران تمایل دارند آنها را ببینند

پیاده سازی سیستم های توصیه گر

دوره برای چه کسانی مناسب است؟

  • علاقه مندان به زبان برنامه نویسی پایتون
  • علاقه مندان به یادگیری ماشین
  • علاقمندان تحلیل و کاوش در داده ها
  • دانشجویان رشته های هوش مصنوعی و داده کاوی
  • توسعه دهندگان وبسایت
  • کارآموزان حوزه ی سیستم های توصیه گر

تکنولوژی و نرم افزار های مورد نیاز

  • پایتون ۳٫۵  به بالا
  • Jupyter Notebook

اگر ابزاری وجود داشته باشد که هر دانشمند داده ای باید از آن استفاده کند یا باید با آن راحت باشد، چیزی نیست جز نوت بوک های Jupyter (که قبلاً به آن notebooks iPython می گفتند). نوت بوک های Jupyter قدرتمند ، همه کاره و قابل اشتراک هستند و توانایی تجسم داده ها را در همان محیط فراهم می کنند

پیشنیاز های پیاده سازی سیستم های توصیه گر

سرفصل های آموزشی دوره پیاده سازی سیستم های توصیه گر

فصل اول :‌ درک مفاهیم سیستم های توصیه گر

  • رابطه ی بین کاربر ها و محصولات
  • انواع الگوریتم های سیستم های توصیه گر
  • Content Based Filtering
  • Collaborative Filtering
  • سیستم های توصیه گر ترکیبی
  • مقایسه الگوریتم های سیستم های توصیه گر

فصل دوم : مدل نزدیک ترین همسایه ها در سیستم های توصیه گر

  • کلاسبندی
  • مدل نزدیک ترین همسایه ها
  • چگونگی محاسبه فاصله بین کاربر ها

فصل سوم : پیاده سازی سیستم توصیه گر با استفاده از مدل نزدیک ترین همسایه ها در پایتون

  • نصب پایتون و آناکوندا
  • معرفی دیتا ست movielens
  • ساخت ماتریس  رتبه بندی
  • محاسبه فاصله بین کاربر ها
  • پیدا کردن نزدیک ترین همسایه ها
  • یافتن N فیلم برتر جهت توصیه به کاربر